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Estimation of Future Mortality Rates and Life
Expectancy in Chronic Medical Conditions

David J. Strauss, PhD, FASA; Pierre J. Vachon, MPH; Robert M. Shavelle, PhD, MBA

Estimates of old-age mortality are necessary for the construction of
life tables and computation of life expectancy, and are essential in
the growing area of life insurance for the elderly. Two common
assumptions are that either the excess death rate (EDR) or the rel-
ative risk (RR) stays constant with increasing age. It is known, how-
ever, that for most medical conditions the former underestimates the
risk and the latter overestimates it. A third popular method is that
of rating up: a subject is said to be ‘‘rated up k years’’ if his future
mortality rates are assumed to be those of a person in the general
population who is k years older. It is shown here that this method
generally leads to gross overestimates of old-age mortality.

We consider two less-commonly used models, log-linear declining
relative risk (LDR) and constant proportional life expectancy (PLE),
and compare them to the methods of constant EDR, constant RR
and rating up. Although slightly more complicated to employ than
the other methods, both LDR and PLE generally give better esti-
mates of mortality and life expectancy.

When mortality rates for chronic conditions are known within a
certain age range, and estimates outside of the range are required,
the LDR and PLE methods may be preferable to the more familiar
methods of constant EDR, constant RR, or rating up.
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True mortality rates for many conditions,
such as cerebral palsy or spinal cord in-

jury, are known with accuracy only up to cer-
tain ages, usually around 70.1–4 The rates at
higher ages are often either unknown or un-
reliable, being based on small samples. For
many purposes, however, mortality rates are
required at all ages. Important examples are
the estimation of life expectancy, valuation of
life annuities, life insurance policies for the
elderly, and litigation involving wrongful
death or lifetime cost of care.5 A complete
schedule of mortality rates requires the use of

methods, such as the ones explored here, to
estimate mortality rates for old ages.

The objective of this study is to compare
five methods of estimation of mortality rates
at advanced ages. It may be noted that the
methods also can be used to extrapolate to
earlier ages. For example, one could assume
that data on older persons may be applied to
younger persons.

In this paper, we are concerned with chron-
ic conditions, such as cerebral palsy or spinal
cord injury, rather than with acute or pro-
gressive conditions, such as cancer, HIV or
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Parkinson disease. The mortality in the latter
may be quite different than would be pre-
dicted by the models considered here. In can-
cer, for example, the excess death rate gener-
ally declines with increasing time from di-
agnosis or treatment, a pattern incompatible
with any of the methods considered here.

Three well-known methods—the assump-
tions of constant excess death rate (EDR),
constant relative risk (RR) and rating up—are
simple to apply but generally lead to biased
estimates of mortality in old age. Constant
excess risk systematically overestimates life
expectancy, while constant relative risk and
rating up systematically underestimate it. As
a result we consider other methods here. We
focus on two less well-known methods, those
of log-linear declining relative risk (LDR) and
proportional life expectancy (PLE). We com-
pare the results of the five methods using
data where the true mortality rates are
known with some precision.

THE FIVE METHODS

We use standard notation for quantities re-
lated to the survival distribution. Let T be the
individual’s survival time, and t denotes a
specific value of the (stochastic) variable T.
Let F(t) be the cumulative distribution func-
tion: F(t) 5 P(T # t), the probability that the
survival time is #t. Let f(t) be the probability
density function, and S(t) 5 1 2 F(t) be the
survival function, ie, the probability that the
individual is alive at time t. The mortality
rate (or hazard rate) is h(t) 5 f(t)/S(t) 5
d/dt{2ln S(t)}.

Provided they are constant over the 1-year
or 5-year periods considered, these age-spe-
cific mortality rates are precisely those given
in the column labeled ‘‘m(t)’’ of a life table.

The life expectancy at time t, denoted here
by e(t), is the expected (ie, average) remaining
survival time for an individual alive at time
t: e(t) 5 # tf(t) dt, where the integral is over
all subsequent ages. It is known6,7 that e(t)
can also be expressed as e(t) 5 # St(x) dx,
where St(x) 5 P(T . x z T . t), for x $ t, is

the conditional survival function given sur-
vival to time t.

These quantities are taken to apply to sur-
vival in a reference population, often simply
the general population. We are also concerned
with survival of persons with a given medical
condition and use the subscript c to distin-
guish this.

We now examine the assumptions and
specifications of the five models.

Constant Excess Death Rate

The assumption of the constant excess
death rate (EDR) method is that the mortality
rate hc(t) of the population of interest exceeds
h(t), the mortality in the reference population,
by a constant.8(p31),9 That is, hc(t) 5 h(t) 1 k,
where the EDR, k, is the same at every age.
For many medical conditions, good data is
available on the EDRs for ages up to about
70. If one is willing to assume that the EDR
remains constant at older ages, the rates in
the target population, hc(t), are immediately
determined, and these can be used to con-
struct a complete life table. The simplicity of
this method is attractive, and it is widely
used.10,11 However, as we shall see, empirical
data indicate that the assumption of constant
EDR generally underestimates hc(t) at old
ages. Hence, this is one reason for interest in
other assumptions, even at the cost of greater
complexity.

Constant Relative Risk

The assumption of the constant relative
risk (RR) method is that the mortality rates
of the population with the disease and of the
reference population have a constant ratio
over time: hc(t) 5 k 3 h(t), where k does not
depend on t. This assumption is implicit in
many studies that work with RR or mortality
ratios (MR). It is widely used in the fields of
underwriting,12,13 epidemiology, and actuarial
science.8(p67) Medical risk evaluators also often
use this method. For example, a rating of 150
suggests that the age-specific mortality rate
should be augmented by 50% at all ages of
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interest, which corresponds to a constant rel-
ative risk of 1.5.

As in the case of the constant EDR method,
the simplicity of calculations is accompanied
by a serious bias, at least for long-term pro-
jections: constant RR leads to mortality rates
that are generally too high at older ages. This
is well documented in the literature.8

Rating Up

In this method, one advances the individ-
ual’s age by a suitable number of years, k,
and then assumes the subsequent mortality
rates to be the reference population rates for
a person k years older. For example, a 40-
year-old smoker may be considered compa-
rable to a person of age 45 in the general pop-
ulation. In this case, he would be said to have
been ‘‘rated up’’ by k 5 5 years. One then
assumes that at age 62 our individual will
have the mortality rate of a normal 67 year
old. The assumption here is that
hc(t) 5 h(t 1 k).

The quantity k is sometimes chosen so that
the individual’s (known) hazard at age t
matches the reference population rate at age
t 1 k.

This method is well known to underwriters
and has been recommended for medicolegal
application14(§26) and certain medical condi-
tions.12 As in the cases of constant EDR or RR,
it has the appeal of simplicity: it requires nei-
ther new calculations nor the construction of
a new life table. Again, however, we shall see
that this comes at the cost of a serious bias.

Note: The term rating up is sometimes
used in a different sense, in connection with
life expectancy. Suppose, for example, that it
is known or estimated that a given 8-year-old
boy with severe cerebral palsy has a life ex-
pectancy of 15 years. As a normal male of age
66 in the general population has approxi-
mately this same life expectancy, one could
assume that the boy has the same schedule of
future mortality rates as the 66-year-old man.
This method again is convenient to use—one
can work solely with standard life tables—
and obviously ensures that the correct (or as-

sumed) life expectancy is preserved. A prob-
lem, however, is that it gives the wrong pat-
tern of mortality rates: while the hazard rates
for a child with severe cerebral palsy are fair-
ly constant over time,15 those for a man of age
66 are initially lower and then climb rapidly
with age. We emphasize that rating up in this
second sense is not considered in the present
article.

Proportional Life Expectancy

Anderson8,16,27 found empirically that for
certain medical conditions, the proportional
life expectancy (PLE) remains approximately
constant at all ages. For example, life expec-
tancy in a given condition may be 60% of nor-
mal, whether the individual is 40, 60 or 80
years old. This is the assumption of PLE.
Mathematically, the assumption is: ec(t)/e(t)
5 r, where r is a constant independent of the
age t.

At first sight, it may seem that even if this
were true it would be difficult to apply in
practice because the relationship between h(t)
and hc(t) that it implies is not at all obvious.
However, the relationship proves to be re-
markably simple: if PLE holds, then the excess
death rate at any age is inversely proportional to
the remaining life expectancy at that age. A math-
ematical proof of this assertion is given in the
Appendix.

To illustrate this ‘‘PLE’’ method, suppose
the EDR for a male with a given condition at
age 60 is known empirically to be 0.010 (ie,
10 deaths per 1000 person-years), and we
wish to estimate the EDR at age 80. The gen-
eral population male life expectancies at ages
60 and 80 are 19.4 and 7.5, respectively.17 Ac-
cording to PLE, therefore, the EDR at age 80
is 0.010 3 19.4/7.5 5 0.026.

By making such calculations at all ages,
one can compute a complete schedule of mor-
tality rates and thus a life table.

Because life expectancies generally de-
crease with age, the excess death rates pre-
dicted by this method will increase with age.
PLE, therefore, yields higher mortality rates
and lower life expectancies than the constant
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EDR method. On the other hand, PLE results
in lower mortality rates than the assumption
of constant relative risk (because life expec-
tancy at older ages declines more slowly than
the mortality rates increase). This comports
with Singer’s observation that for many med-
ical conditions, the mortality ratios decrease
with age, while the excess death rates in-
crease.18(p18) Therefore, PLE occupies a middle
ground between constant RR (which tends to
underestimate life expectancy) and constant
EDR (which tends to overestimate it). As we
shall see, in many cases PLE gives better es-
timates of old-age mortality than either.

Anderson8,16 has pointed out that in some
conditions the proportional life expectancy
varies slowly and in a linear fashion rather
than remaining constant as assumed here. By
modeling this linear trend one could in prin-
ciple arrive at an improved version of the PLE
method. However, such a method would be
extremely complex to apply in practice for
two reasons. First, the rate of linear change
would have to be estimated, which is a dif-
ficult task in most cases. Secondly and more
seriously, if this more general model is as-
sumed, there appears to be no simple math-
ematical relationship between the required
hazards hc(t) and the known hazards h(t).

Log-Linear Declining Relative Risk

In many populations (including the general
population), age-specific mortality over the
age-range of 30 to 75, say, roughly follows the
Gompertz Law19 h(t) 5 exp(g 1 kt), for suit-
able constants g and k. That is, mortality
grows exponentially with age. If such a rela-
tionship holds for both the general popula-
tion and the population with the medical con-
dition, then it follows that ln{hc(t)} 5 ln{h(t)}
1 b(a 2 t) for some constants a and b, and
a suitable range of ages t. An equivalent ex-
pression is: ln[hc(t)/h(t)] 5 b(a 2 t), which
shows that the logarithm of the relative risk
declines linearly with increasing age.1 We re-
fer to this model as log-linear declining risk
(LDR). Note that the Gompertz law is suffi-
cient, though not necessary, for LDR to hold.

At age t 5 a the hazards rates hc(t) of per-
sons with the condition and h(t) in the ref-
erence population become equal. This age is
termed the parity age. We have found in prac-
tice that the parity age is at least 100.1 Beyond
that age, the choice of hc has little bearing on
life expectancy, and our suggestion is to use
hc(t) 5 h(t) for t . a.

Although in certain cases we consider par-
ity ages well in excess of 100 (the assumption
of constant RR is equivalent to an infinite
parity age), we do not assert that mortality
rates beyond age 100 really follow the above
law—observations beyond age 100 are too
uncommon for this to be either testable or im-
portant in practice. Instead, the assertion is
only that mortality rates at younger ages are
consistent with a law that gives parity at the
given age.

Because the mortality rates h(t) are known
from standard sources,1 once a and b are
known the mortality rates hc(t) can be com-
puted directly. In practice the parity age a
has in some cases been estimated from pre-
vious research (an estimate of 100 years is
reasonable in many instances), and the pa-
rameter b is determined if, as is usually the
case, the relative risk is known at some given
age. For example, if the logarithm of the rel-
ative risk is known to be 4.0 at age 30, and is
assumed to be 0 at age 100 (which is therefore
the parity age), then at the halfway point, age
65, the logarithm of the relative risk is esti-
mated to be 2.0. That is, the hazard rate for
the condition at age 65 is taken to be the gen-
eral population rate multiplied by e2.0 (where
e 5 2.718 is the base for natural logarithms).
In this example, b 5 [4 2 ln(1.0)]/(100 2 30)
5 0.057.

With increasing age, conditions such as
heart disease or cancer become frequent in
the general population. As the death rate
from such conditions may be no higher
among persons with the medical condition in
question, the result is usually that relative
risks decline sharply with age.1 The LDR
method appropriately constrains the relative
risks to decrease with age, rather than to stay
constant. In practice, LDR—like PLE—occu-
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pies a middle ground between the generally
biased methods of constant EDR and con-
stant RR.

EXAMPLES

To test the accuracy of the five methods, we
applied the procedures to several conditions
where the true mortality rates at advanced
ages were known with some accuracy. Al-
though in the previous section we worked
with continuous time, the examples that fol-
low are necessarily based on a ‘‘discrete’’
time scale—either 1-year or 5-year intervals.

Sex Differences

Though not a medical condition, male sex
is associated with higher mortality. It is a use-
ful example for our purposes because the ‘‘ef-
fect’’ of male sex (eg, its EDR or RR) is known
with precision from standard tables. Here we
used mortality rates based on data from
Finnish males and females, 1990 to 1995. The
male mortality rates were known for all
ages,20 but for the present exercise we as-
sumed that male mortality was known only
up to age 30 (we refer to age 30 here as the
anchor age) and had to be estimated from fe-
males rates thereafter, using one of the five
methods.

To illustrate the calculations for the five
methods, the following facts are needed:

Mortality rate of females at age 30 0.000449
Mortality rate of males at anchor age 30 0.001578
EDR for males at age 30 0.001129
RR for males at age 30 3.5
Rating up (male mortality at age 30 5

female mortality at age 43)
113 years

Life expectancy of females at age 30 50.43

Based on the above, we can estimate the male
mortality rates for ages beyond 30. We illus-
trate this for age 50; the calculations for other
ages are analogous. The base female mortal-
ity rate at age 50 is 0.002513.

a) Constant excess death rate: the estimated
male mortality rate at age 50 is 0.002513
1 0.001129 5 0.003642.

b) Constant relative risk: the estimated male
rate at 50 is 0.002513 3 3.5 5 0.008796.

c) Rating up does not require any computa-
tion; we estimate the male rate at age 50
to be that of a 63-year-old (550 1 13) fe-
male. This is 0.007923.

Note: Because published mortality rates
generally do not extent beyond age 109,
and in some cases not beyond age 100,
there is an upper limit to the age at which
the rating up method may in practice be
applied. This is reflected in the Figures
presented here. Whereas the graphs for
the other methods extend to age 100, those
for rating up end at earlier ages.

d) The PLE method requires the life expec-
tancies in the reference population. Here,
the life expectancy for females at age 50 is
31.4 years. From this, and the life expec-
tancy of females at age 30 (50.4 years), we
estimate the excess death rate at age 50 to
be the ratio of life expectancies in the ref-
erence (here female) population multiplied
by the excess death rate at age 30. That is,
the EDR for males at age 50 is the EDR at
30 times the ratio of life expectancies at 30
and 50: 0.001129 3 50.4/31.4 5 0.001812.

Finally, the estimated male rate at age 50
is the female rate at 50 plus this EDR:
0.002513 1 0.001812 5 0.004325.

e) The LDR method requires two steps. The
first is to find the rate of the annual (lin-
ear) decrease in the log of the relative risk.
We assume here that the relative risk will
reach 1 (and thus its logarithm will reach
0) at age 100. It follows that with each year
of age from 30 to 100 the log of the relative
risk will decrease by: b 5 [ln(3.5) 2
ln(1.0)]/[100 2 30] 5 0.01790. This is the
b of the previous section, section ‘‘Log-lin-
ear Declining Risk.’’

The second step is to find the estimated
relative risk at age 50 and apply it to the
female rate at age 50. The log of this rel-
ative risk is equal to ln(3.5) 2 [(50 2 30)
3 0.01790] 5 0.8948.
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Figure 1. Natural log of mortality rate by age: sex difference.

That is, the log of the projected relative risk
is smaller than the log of relative risk at
age 30 by a total of 20 increments of the
annual decline (b). This gives an estimated
relative risk of exp{0.8948} 5 2.447, and
therefore an estimated mortality rate at 50
of 2.447 3 0.002513 5 0.006149.

Computations for all ages are shown in Fig-
ure 1. The figure shows that the rating up
method grossly overestimates the true mor-
tality rates. Also, as expected, the constant RR
and constant EDR methods respectively over-
estimate and underestimate the true rates, the
former dramatically so at old ages. Overall,
LDR appears to be the most accurate and PLE
is the second best, although in this case PLE
tends to underestimate the mortality rates.

Note that the results are dependent on the
‘‘anchoring’’ age, in this case 30, and on the
actual difference in mortality at that age [hc(t)
2 h(t)], as this difference serves as the basis
for all the estimated results.

Era Differences

As a second example, we used the mortal-
ity rates of one period to predict those of an-
other. Era is of course not per se a medical
condition; it is used here nonetheless because

again the true mortality rates are known with
great precision over the whole age range. We
illustrate with the example of mortality rates
of Japanese females for two periods, 1970 to
1975 and 1950 to 1955, to which we will refer
here as late and early.20 As were the male
rates in the previous example, the early rates
were assumed unknown for ages 30 and
above. The five methods were then used to
estimate early rates for ages 31 to 100 based
on the late rates (Figure 2).

The pattern in Figure 2 is similar to the
previous one in that rating up grossly over-
estimates the rates, constant RR overesti-
mates them to a somewhat lesser extent, and
constant EDR underestimates them. LDR and
PLE give the best estimates, although the for-
mer overestimates rates at younger ages.

Diabetes

Data for diabetes mellitus were extracted
from Gu et al,21 which in turn was based on
the First National Health and Nutrition Ex-
amination Survey of 14,374 subjects in 1971–
1975. These authors assessed deaths through
1993, and computed mortality rates for quin-
quennial age groups, 30–35 to 85–90. Here the
data were presumed unknown for ages 33
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Figure 2. Natural log of mortality rate by age: era difference.

and above, and the five methods were then
used to estimate these.

Unlike cerebral palsy and spinal cord injury,
diabetes mellitus is not a static condition, and
further the mix of Types I and II diabetes,
each of which has its own pattern of mortality,
may well vary with age. Nevertheless, it may
be of interest to see how the various methods
predict aggregate diabetes mortality at older
ages. An advantage of diabetes as an example
here is that it is a very common condition,
with relatively good ‘‘truth’’ data on mortality
rates over a broad age range.

As the true mortality data for diabetes
were available in 5-year age groups, these
were plotted as discrete points rather than as
a continuous curve (Figure 3).

Once again, rating up grossly overesti-
mates mortality rates and constant RR over-
estimates them to a smaller extent. Constant
EDR again underestimates the risks at youn-
ger ages. Overall, LDR estimates are the most
satisfactory, and the PLE method is second
best, although it clearly underestimates the
risks up to age about 70 years.

Cerebral Palsy

Data from California were used here.1,15,22

Subjects had cerebral palsy and could not

crawl, creep, scoot, walk or feed themselves.
Mortality rates were obtained for quinquen-
nial age groups 30 to 70. The true rates were
presumed unknown for ages 33 and above,
and the five methods were used to estimate
these. Estimated rates were then compared to
the true rates (Figure 4).

The empirical mortality rates in 5-year age
groups present a somewhat irregular pattern,
presumably because of sampling variation in
the smaller groups. Nevertheless, the familiar
biases in the rating up and constant RR and
EDR methods are observed. Again the LDR
and PLE methods, which give rather similar
estimates, appear to be best.

Spinal Cord Injury

Data for spinal cord injury (SCI) were from
the National Model Systems Spinal Cord In-
jury data base as presented in Strauss, De-
Vivo and Shavelle (2000).4(Tables 2 and 3) Two sub-
populations were examined: high tetraplegics
(injuries at the level of one of the first four
cervical nerves, C1 to C4) and low tetraple-
gics (C5–C8). Only the three most severe
grades of injury (A, B and C) were considered
here. We chose cervical injuries because of the
high mortality rates, which enabled us to es-
timate the true rates over a wide age range
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Figure 3. Natural log of mortality rate by age: diabetes.

with reasonable accuracy. Mortality rates
were obtained for quinquennial age groups
30 to 70. Again, the true rates were presumed
unknown for ages 33 and above, and the five
methods were used to estimate these for ages
33 to 100 (Figure 5).

Parity ages in SCI for the LDR method had
been previously considered by Bush et al.23

Those authors found that the rate of decline
in relative risk with age was slower than pre-
dicted from the ‘‘usual’’ parity age of 100.
They suggested that an infinite parity age (ie,
constant relative risk) was appropriate for
C4–C8 grade A (complete) injuries, and that
a parity age of 118 be used for all other com-
binations of level and grade. However, if a
single parity age were to be used for all spi-
nal cord injuries, the best estimate was 140.
For simplicity we have used this last figure
for all SCI related computations reported
here.

The results for these spinal cord injury
subgroups show a different pattern than that
observed for the other conditions. Constant
RR provides the best estimates up to the 50–
55 age group. Thereafter, the method over-
estimates the mortality rates, as usual. LDR
underestimates the true rates up to this point,
though it gives good estimates thereafter. The

PLE estimates are again similar to, but slight-
ly lower than, those from LDR, and as usual
the assumption of constant EDR underesti-
mates the true rates at all ages.

The pattern for C5–C8 spinal cord injuries
(Figure 6) is similar to that of C1–C4 injuries
(Figure 5). Again, constant RR produces good
results for younger ages but later tends to
overestimate the rates. Here, too, LDR signif-
icantly underestimates rates for younger ages,
but gives reasonable estimates at older ages.
The fact that the data underlying Figures 5
and 6 are entirely separate but give similar
results suggests that these results are not an
artifact of sampling variation.

COMPARISON OF ESTIMATES

For many purposes, the life expectancy is
an important summary measure of the sched-
ule of mortality rates. In this section, we com-
pare life expectancies resulting from the five
methods with the ‘‘true’’ values of life expec-
tancy.

The Table shows the results for the five
conditions we considered in the previous sec-
tion. Two sets of estimated rates were used
for the Sex Differences and Era Differences,
the first anchored at age 30 and the second at
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Figure 4. Natural log of mortality rate by age: cerebral palsy.

Figure 5. Natural log of mortality rate by age: spinal cord injury, levels C1–C4.

age 60. In both cases, life expectancies at age
60 and age 75 were also computed.

Life expectancies were calculated for each
condition at the given ages based on six
schedules of mortality rates: those estimated
by the five methods, plus the true rates. The
values in the Table show the difference be-
tween (a) the life expectancy as calculated
from the estimated rates and (b) the true life

expectancy. For each comparison, the best re-
sult is shown in bold. For example, the first
row corresponds to the data of Figure 1. The
true Finland male life expectancy at age 30
was 43.4 additional years.20 The assumption
of constant EDR for males (compared to fe-
males) seriously underestimates the differ-
ence between the sexes at older ages, and re-
sults in a 5.6-year overestimate of male life
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Figure 6. Natural log of mortality rate by age: spinal cord injury, levels C5–C8.

Table. Comparison of Life Expectancy Estimates From the Five Methods

Anchoring
Age LE at age

True Value
of LE

Estimate Minus True Value

EDR RR Rate Up LDR PLE

Sex Differences 30 30
60
75

43.4
17.6
8.4

5.6
4.5
2.2

24.3
23.7
23.4

25.5
25.6
24.1

1.3
1.4
0.5

4.4
3.6
1.7

60 60
75

17.6
8.4

2.3
1.6

21.7
22.2

21.9
22.2

0.3
20.1

0.9
0.4

Era Differences 30 30
60
75

41.8
17.0
7.8

2.7
2.5
1.2

27.5
26.1
24.2

212.1
210.0
25.2

21.8
21.0
20.6

0.5
0.9
0.3

60 60
75

17.0
7.8

1.3
0.9

21.5
21.7

21.7
21.7

20.1
20.2

0.4
0.1

Diabetes 32.5 30 35.8 7.0 22.8 26.5 2.8 4.3

Cerebral Palsy 37.5 30 29.7 2.3 25.7 27.6 21.1 21.2

Spinal Cord Injury 32.5 30 26.6 8.1 21.4 25.1 1.9 4.0
Levels C1-C4, Grades ABC

Spinal Cord Injury 32.5 30 31.5 8.2 20.1 24.3 2.8 5.4
Levels C5-C8, Grades ABC

Average absolute error (years)
Average absolute error (as % of true values)
Average error (as % of true values)

5.7
16%
16%

3.6
10%

210%

6.9
20%

220%

2.0
6%
3%

3.3
10%

8%

Note: Parity ages for LDR were all 100 except for spinal cord injury, where age 140 was used.23
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expectancy. Conversely, constant RR leads to
a 4.3-year underestimate, and rating up to a
5.5-year underestimate. The closest estimate
is given by LDR, which overestimates by 1.3
years.

For Era Differences rather similar findings
are obtained, although in this case PLE is
slightly better than LDR. For diabetes, none
of the methods estimates the life expectancy
especially well, although LDR and constant
RR give the best estimates. PLE and LDR are
clearly the best methods for the case of ce-
rebral palsy, giving errors of approximately 1
year only. Finally for spinal cord injury, the
best estimates are obtained from constant RR,
although LDR is a clear second.

At the foot of the Table, we present some
summary measures of the overall perfor-
mance of the five methods. The first two rows
give the average over all the comparisons (at
age 30 only) of the absolute error (ie, with
signs ignored and absolute values) and of the
errors expressed on a percentage basis. The
third row is the average of the errors (ex-
pressed as a percentage of the true life ex-
pectancies). According to this, the best meth-
od is LDR, which on average overestimates
life expectancies by 3%. The worst is rating
up, which underestimates them by an average
of 20%. PLE gives results rather similar to
those of LDR, though tends to overestimate
the true values by a slightly larger amount.
Finally, constant EDR leads to serious over-
estimation of life expectancy, with an average
error of 16%. In every example we consid-
ered, constant EDR overestimated the true
life expectancy, and constant RR underesti-
mated it.

DISCUSSION

In actuarial work pertaining to persons
with chronic medical conditions, it is fre-
quently necessary to extrapolate mortality
rates beyond the age range where reliable
data is available. This is important in the pric-
ing of life annuities and life policies for the
elderly, in medicolegal work requiring an es-
timate of the cost of lifetime care and in sci-

entific work on the estimation of life expec-
tancy.

We have seen that the commonly used
method of constant relative risk generally
overestimates mortality at old ages, and
therefore underestimates life expectancy. The
reason is that natural causes, such as heart
disease and cancer, tend to be the main cause
of death in old age, and these conditions may
be nearly as common in the general popula-
tion as in persons with the condition of in-
terest. For example, the relative risk for a
young person with severe cerebral palsy may
be 100 or more,15 but in old age, where the
general population mortality rates eventually
exceed 8% or 80 per 1000, such a relative risk
is inconceivably high.

Our impression is that this aspect of the
constant RR method is well known amongst
life policy underwriters, who may feel that its
use is justified because it is conservative. This
is true for the writing of life policies, though
of course the reverse is true for the pricing of
single-premium annuities. However, a case
can be made for the use of more accurate
methods, such as those described here. One
can still build conservatism into the pricing;
the difference is that one will then know the
added margin of error more precisely.

It may be appropriate to comment on the
use of life expectancy as a criterion for com-
parison of the methods. Life expectancy is a
useful summary measure of longevity in pric-
ing of single-premium annuities, and for
structured settlements involving disabilities
arising from personal injuries. In life insur-
ance underwriting, however, the probability
of lapses are taken into account, and greater
weight should be placed on short-term rather
than on long-term mortality. Perhaps a cri-
terion other than life expectancy may be more
appropriate for this application. For short-
term applications, mortality data for the age
range of interest may exist. In such cases, the
methods discussed here are not needed.

The tendency of relative risks to decline
steadily with age creates a problem in many
applications. If a published study shows that
a given condition is associated with a relative
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risk of 2 (ie, a rating of 1100), it cannot be
assumed that this applies at all ages. It is nec-
essary to know the age range on which the
figure is based. For example, a relative risk of
2 for a disease of childhood would have only
a very small effect on life expectancy because
childhood mortality is so low. A condition
such as smoking that approximately doubles
adult mortality has a much larger effect. We
believe it would be highly desirable if quoted
ratings (such as 1100) or relative risks were
routinely accompanied by the age range on
which they are based. Of additional concern
is the fact that RRs are critically dependent
on which base population is used. For ex-
ample, an RR of 2 based on a reference pop-
ulation of mostly males implies a much larger
excess risk than if the reference population is
mostly female.

Rating up, another commonly used meth-
od, in effect advances the individual’s age by
a certain number of years to reflect his med-
ical condition. The method is seen to overes-
timate older-age mortality even more than
the assumption of constant relative risk. In
the comparisons reported here, the average
underestimation of life expectancy was ap-
proximately 20% (see Table). The simplicity of
rating up is an attractive feature (the general
population life tables can still be used), but
otherwise there seems little to recommend it.

Although less widely used than constant
RR, the assumption of constant EDR has been
recommended.24 This is appropriate in some
circumstances. In practice, however, the EDRs
in most conditions do increase with age. The
evidence indicates that constant EDR gener-
ally underestimates older-age mortality, and
thus overestimates life expectancy. On aver-
age, the overestimation was 16% in the com-
parisons shown in the Table.

The assumption of log-linear declining rel-
ative risk (LDR) performed the best of the
methods considered here. The average abso-
lute error in the estimated life expectancies
(ie, with sign ignored) was 2.0 years, and the
bias (ie, the average error when signs are tak-
en into account) was only 3%. The assump-
tion has some theoretical basis. Mortality

rates in the general population rise approxi-
mately exponentially, at least over the age
range of 30–70 (Gompertz law). If mortality
in the condition of interest also climbs ex-
ponentially even though with a different rate
of increase, then as a mathematical conse-
quence, LDR holds.

An issue arising in the application of LDR
is the parity age, the age at which the relative
risk associated with the condition declines to
1.0. We have found that parity at 100 is a rea-
sonable choice for cerebral palsy (this is a re-
finement of our earlier work,1 where parity at
ages 85 to 95 were suggested) and for trau-
matic brain injury,25 diabetes (Figure 3), and
other conditions. However, spinal cord injury
is an exception: the parity age is higher and
may even be infinite (ie, constant, rather than
declining, relative risk). Our suggestion is
that LDR with parity age 100 may be a rea-
sonable default choice in general unless there
is evidence (or clinical argument) to the con-
trary, but further empirical comparisons here
would be valuable.

The proportional life expectancy (PLE)
method for estimating old-age mortality has
not been previously proposed. Anderson8,16

appears to have been the first to show that,
for several medical conditions, the life expec-
tancy expressed as a proportion of general
population life expectancy is either constant
or only slowly changing as age increases.
This insight, combined with the mathematical
relationship proved in the Appendix, leads to
a usable estimation technique. According to
the evidence presented here, the method does
not perform quite as well as LDR, and it has
some tendency to underestimate hazards at
older ages. The graphs show, however, that
the estimates derived from PLE are usually
rather similar to those from LDR, and the
method seems generally superior to the more
common assumptions of constant RR, con-
stant EDR or rating up. Further, PLE has the
advantage over LDR of not requiring the as-
sumption of a parity age. We have found the
PLE method to be useful in empirical work,
and believe it merits further consideration.

The methods we have considered are ap-
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plicable to long-term hazards in ‘‘static’’ con-
ditions, such as cerebral palsy, traumatic
brain injury or spinal cord injury. They may
be also reasonable for some chronic or slowly
developing conditions, such as diabetes or
coronary artery disease, although further in-
vestigation would be valuable here. Another
possible application is to ‘‘lifestyle’’ factors,
such as obesity or being sedentary. On the
other hand, none of the methods we have
considered are likely to be applicable to acute
conditions, such as pulmonary embolisms or
most forms of cancer. Neither would they be
expected to apply to degenerative conditions
(eg, multiple sclerosis, Parkinson disease). In
this context it may be noted that, unlike ce-
rebral palsy, Down syndrome should be con-
sidered a degenerative condition beyond the
age of about 40, and indeed the data suggest
that the relative risk in Down syndrome ac-
tually increases with age beyond 40.1 Such a
pattern is incompatible with all the methods
we have considered. A common feature of
these acute or degenerative conditions is that
they may not be associated with the usual ex-
ponential rise in mortality with age, and
therefore may not meet the LDR assumption.

It should be noted that the present study
has focused on the extrapolation of mortality
rates outside the age range where data is
available. Other forms of extrapolation are
also important in practice. A common prob-
lem arises in applying published data from
epidemiological studies or clinical trials to an
insured population. Suppose that in the clin-
ical trial, the mortality rates of persons with
and without the medical condition are a and
b, respectively. To apply this to an insured
population, should one assume an EDR of (a-
b), an RR of a/b, or use some other adjust-
ment?

Research data to guide this choice is lim-
ited. The issue has been recently studied by
Roudebush and Klein,26 who concluded that
constant EDR was the best of the methods
they considered. Note that the newer meth-
ods considered in the present article—LDR
and PLE—are specific to extrapolation across
ages, and thus are not applicable in this situ-

ation. For this reason and others, it is certain-
ly not our intention to suggest that standard
methods relying on constant RR or EDR are
no longer useful.

We conclude with a caveat. Although we
believe that the comparisons made here are
sufficient to justify the broad conclusions dis-
cussed above, it must be acknowledged that
empirical comparisons available so far are
rather limited. A difficulty in evaluating the
various methods is that there are relatively
few chronic medical conditions where the
true mortality rates over a wide range of ages
can be estimated with precision. No doubt
further empirical comparisons will lead to
further insights. It is hoped that the present
work at least represents a start in this direc-
tion.
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APPENDIX

Theorem: If PLE holds, then the excess death
rates are inversely proportional to the re-
maining life expectancies.

Proof

As specified in the section on PLE, the fun-
damental hypothesis is that

ec(t)/e(t) 5 r. (1)

The remaining life expectancy at age t, e(t),
can be written

e(t) 5 S(x) dx/S(t), (2)E
where the integral is from t to infinity, and
thus

ln {e(t)} 5 ln{I(t)} 2 ln{S(t)}, (3)

where

I(t) 5 S(x) dx. (4)E
It follows that

d/dt[ln{e(t)}] 5 d/dt[I(t)]/I(t) 1 h(t)

5 21/e(t) 1 h(t). (5)

Similarly,

d/dt[ln{ec(t)}] 5 21/ec(t) 1 hc(t). (6)

Now according to (1)

ln{ec(t)} 5 ln{e(t)} 1 ln{r} (7)

so

d/dt ln{ec(t)} 5 d/dt ln{e(t)}. (8)
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Thus, the right hand sides of (5) and (6) are
equal. Hence

21/[r·e(t)] 1 hc(t) 5 21/e(t) 1 h(t), (9)

and the excess death rates are

hc(t) 2 h(t) 5 k/e(t), (10)

where k 5 (1 2 r)/r.

Comments

1. Note that the units for (10) are appropri-
ately those of a rate per year.

2. As the remaining life expectancy is gen-
erally a decreasing function of t, the EDR

is generally monotonically increasing in t.
Hence, the PLE estimates of hazards at old
ages are generally higher than those based
on the assumption of constant EDR.

3. The rate of increase in {1/e(t)} is generally
slower than that of h(t). The PLE estimates
of hazards are therefore generally lower
than those based on constant RR.

4. To implement PLE all that is needed is a
reliable estimate of EDR(t0) for some given
age t0. One then computes e(t0)/e(t) for all
t, and uses hc(t) 5 h(t) 1 EDR(t0)·e(t0)/e(t).
The ratio of expectancies in this formula
will generally be computed from data on
the reference population.


